Metrologi och mätning. Fysikaliska fenomen

Kommittébeteckning: SIS/TK 111 (Vibration och stöt)
Källa: ISO
Svarsdatum: den 30 okt 2020
Se merSe mindre
 

This part of ISO 16063 describes the calibration of rectilinear vibration transducers by comparison. Although it mainly describes calibration using direct comparison to a standard calibrated by primary methods, the methods described can be applied between other levels in the calibration hierarchy. This part of ISO 16063 specifies procedures for performing calibrations of rectilinear vibration transducers by comparison in the frequency range from 0,4 Hz to 10 kHz. It is primarily intended for those who are required to meet ISO standardized methods for the measurement of vibration under laboratory conditions, where the uncertainty of measurement is relatively small. It can also be used under field conditions, where the uncertainty of measurement may be relatively large. From knowledge of all significant sources of uncertainty affecting the calibration, the expanded uncertainty can be evaluated using the methods given in this part of ISO 16063. It also covers the assessment of uncertainties for calibrations performed using a check standard. Comparison calibrations made in accordance with this part of ISO 16063 need to allow for the environmental conditions of the reference transducer calibration. NOTE Transducer calibrations made under extreme environmental conditions are covered by other International Standards.

Kommittébeteckning: SIS/TK 433 (Färg och lack)
Källa: CEN
Svarsdatum: den 4 nov 2020
Se merSe mindre
 

This document specifies the overall scope of all parts of EN 13523, gives definitions common to all parts and describes how sampling and preparation of test panels for most of the individual test methods are to be carried out.

Kommittébeteckning: SIS/TK 433 (Färg och lack)
Källa: CEN
Svarsdatum: den 4 nov 2020
Se merSe mindre
 

This document specifies the procedure for determining the gloss of an organic coating on a metallic substrate. Gloss is a characteristic of fundamental importance to the appearance of the coil coated product.

The apparatus requires a flat specimen of size greater than the aperture, thus, uneven surfaces cannot be measured.

This method is applicable to all pigmented and unpigmented coatings including metallic/pearlescent coatings. However, for textured coatings it is only indicative.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 17 nov 2020
Se merSe mindre
 

The ISO 11929 series specifies a procedure, in the field of ionizing radiation metrology, for the calculation of the "decision threshold", the "detection limit" and the "limits of the coverage interval" for a non-negative ionizing radiation measurand when counting measurements with preselection of time or counts are carried out. The measurand results from a gross count rate and a background count rate as well as from further quantities on the basis of a model of the evaluation. In particular, the measurand can be the net count rate as the difference of the gross count rate and the background count rate, or the net activity of a sample. It can also be influenced by calibration of the measuring system, by sample treatment and by other factors.

ISO 11929 has been divided into four parts covering elementary applications in this document, advanced applications on the basis of the ISO/IEC Guide 3-1 in ISO 11929-2, applications to unfolding methods in ISO 11929-3, and guidance to the application in ISO 11929-4.

This document covers basic applications of counting measurements frequently used in the field of ionizing radiation metrology. It is restricted to applications for which the uncertainties can be evaluated on the basis of the ISO/IEC Guide 98-3 (JCGM 2008). In Annex A, the special case of repeated counting measurements with random influences is covered, while measurements with linear analogous ratemeters are covered in Annex B.

ISO 11929-2 extends the former ISO 11929:2010 to the evaluation of measurement uncertainties according to the ISO/IEC Guide 98-3-1. ISO 11929-2 also presents some explanatory notes regarding general aspects of counting measurements and on Bayesian statistics in measurements.

ISO 11929-3 deals with the evaluation of measurements using unfolding methods and counting spectrometric multi-channel measurements if evaluated by unfolding methods, in particular, for alpha- and gamma-spectrometric measurements. Further, it provides some advice on how to deal with correlations and covariances.

ISO 11929-4 gives guidance to the application of the ISO 11929 series, summarizes shortly the general procedure and then presents a wide range of numerical examples. Information on the statistical roots of ISO 11929 and on its current development may be found elsewhere[33][34].

The ISO 11929 series also applies analogously to other measurements of any kind especially if a similar model of the evaluation is involved. Further practical examples can be found, for example, in ISO 18589[1], ISO 9696[2], ISO 9697[3], ISO 9698[4], ISO 10703[5], ISO 7503[6], ISO 28218[7], and ISO 11665[8].

NOTE A code system, named UncertRadio, is available for calculations according to ISO 11929-1 to ISO 11929-3. UncertRadio[31][32] can be downloaded for free from https: //www .thuenen .de/de/fi/arbeitsbereiche/meeresumwelt/leitstelle -umweltradioaktivitaet -in -fisch/uncertradio/. The download contains a setup installation file which copies all files and folders into a folder specified by the user. After installation one has to add information to the PATH of Windows as indicated by a pop-up window during installation. English language can be chosen and extensive "help" information is available.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 17 nov 2020
Se merSe mindre
 

The ISO 11929 series specifies a procedure, in the field of ionizing radiation metrology, for the calculation of the "decision threshold", the "detection limit" and the "limits of the coverage interval" for a non-negative ionizing radiation measurand when counting measurements with preselection of time or counts are carried out. The measurand results from a gross count rate and a background count rate as well as from further quantities on the basis of a model of the evaluation. In particular, the measurand can be the net count rate as the difference of the gross count rate and the background count rate, or the net activity of a sample. It can also be influenced by calibration of the measuring system, by sample treatment and by other factors.

ISO 11929 has been divided into four parts covering elementary applications in ISO 11929-1, advanced applications on the basis of the GUM Supplement 1 in this document, applications to unfolding methods in ISO 11929-3, and guidance to the application in ISO 11929-4.

ISO 11929-1 covers basic applications of counting measurements frequently used in the field of ionizing radiation metrology. It is restricted to applications for which the uncertainties can be evaluated on the basis of the ISO/IEC Guide 98-3 (JCGM 2008). In Annex A of ISO 11929-1:2019 the special case of repeated counting measurements with random influences is covered, while measurements with linear analogous ratemeters are covered in Annex B of ISO 11929-1:2019.

This document extends the former ISO 11929:2010 to the evaluation of measurement uncertainties according to the ISO/IEC Guide 98-3-1. It also presents some explanatory notes regarding general aspects of counting measurements and on Bayesian statistics in measurements.

ISO 11929-3 deals with the evaluation of measurements using unfolding methods and counting spectrometric multi-channel measurements if evaluated by unfolding methods, in particular, for alpha- and gamma-spectrometric measurements. Further, it provides some advice on how to deal with correlations and covariances.

ISO 11929-4 gives guidance to the application of ISO 11929, summarizes shortly the general procedure and then presents a wide range of numerical examples. Information on the statistical roots of ISO 11929 and on its current development may be found elsewhere[30,31].

ISO 11929 also applies analogously to other measurements of any kind especially if a similar model of the evaluation is involved. Further practical examples can be found, for example, in ISO 18589[1], ISO 9696[2], ISO 9697[3], ISO 9698[4], ISO 10703[5], ISO 7503[6], ISO 28218[7], and ISO 11885[8].

NOTE A code system, named UncertRadio, is available for calculations according to ISO 119291 to ISO 11929-3. UncertRadio[27][28] can be downloaded for free from https: //www .thuenen .de/en/fi/fields -of -activity/marine -environment/coordination -centre -of -radioactivity/uncertradio/. The download contains a setup installation file which copies all files and folders into a folder specified by the user. After installation one has to add information to the PATH of Windows as indicated by a pop-up window during installation. English language can be chosen and extensive "help" information is available. . Another tool is the package ‘metRology’[32] which is available for programming in R. It contains the two R functions ‘uncert’ and ‘uncertMC’ which perform the GUM conform uncertainty propagation, either analytically or by the Monte Carlo method, respectively. Covariances/correlations of input quantities are included. Applying these two functions within iterations for decision threshold and the detection limit calculations simplifies the programming effort significantly. It is also possible to implement this part of ISO 11929 in a spreadsheet containing a Monte Carlo add-in or into other commercial mathematics software.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 17 nov 2020
Se merSe mindre
 

The ISO 11929 series specifies a procedure, in the field of ionizing radiation metrology, for the calculation of the "decision threshold", the "detection limit" and the "limits of the coverage interval" for a non-negative ionizing radiation measurand when counting measurements with preselection of time or counts are carried out. The measurand results from a gross count rate and a background count rate as well as from further quantities on the basis of a model of the evaluation. In particular, the measurand can be the net count rate as the difference of the gross count rate and the background count rate, or the net activity of a sample. It can also be influenced by calibration of the measuring system, by sample treatment and by other factors.

ISO 11929 has been divided into four parts covering elementary applications in ISO 11929-1, advanced applications on the basis of the ISO/IEC Guide 98-3-1 in ISO 11929-2, applications to unfolding methods in this document, and guidance to the application in ISO 11929-4.

ISO 11929-1 covers basic applications of counting measurements frequently used in the field of ionizing radiation metrology. It is restricted to applications for which the uncertainties can be evaluated on the basis of the ISO/IEC Guide 98-3 (JCGM 2008). In Annex A of ISO 11929-1:2019, the special case of repeated counting measurements with random influences is covered, while measurements with linear analogous ratemeters, are covered in Annex B of ISO 11929-1:2019.

ISO 11929-2 extends the former ISO 11929:2010 to the evaluation of measurement uncertainties according to the ISO/IEC Guide 98-3-1. ISO 11929-2 also presents some explanatory notes regarding general aspects of counting measurements and on Bayesian statistics in measurements.

This document deals with the evaluation of measurements using unfolding methods and counting spectrometric multi-channel measurements if evaluated by unfolding methods, in particular, for alpha- and gamma-spectrometric measurements. Further, it provides some advice on how to deal with correlations and covariances.

ISO 11929-4 gives guidance to the application of the ISO 11929 series, summarizes shortly the general procedure and then presents a wide range of numerical examples.

ISO 11929 Standard also applies analogously to other measurements of any kind especially if a similar model of the evaluation is involved. Further practical examples can be found, for example, in ISO 18589[7], ISO 9696[2], ISO 9697[3], ISO 9698[4], ISO 10703[5], ISO 7503[1], ISO 28218[8], and ISO 11665[6].

NOTE A code system, named UncertRadio, is available for calculations according to ISO 11929- 1 to ISO 11929-3. UncertRadio[35][36] can be downloaded for free from https: //www .thuenen .de/en/fi/fields -of -activity/marine -environment/coordination -centre -of -radioactivity/uncertradio/. The download contains a setup installation file which copies all files and folders into a folder specified by the user. After installation one has to add information to the PATH of Windows as indicated by a pop-up window during installation. English language can be chosen and extensive "help" information is available.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 17 nov 2020
Se merSe mindre
 

This document specifies the characteristics and production methods of X and gamma reference radiation for calibrating protection-level dosemeters and doserate meters with respect to the phantom related operational quantities of the International Commission on Radiation Units and Measurements (ICRU)[5]. The lowest air kerma rate for which this standard is applicable is 1 μGy h–1. Below this air kerma rate the (natural) background radiation needs special consideration and this is not included in this document.

For the radiation qualities specified in Clauses 4 to 6, sufficient published information is available to specify the requirements for all relevant parameters of the matched or characterized reference fields in order to achieve the targeted overall uncertainty (k = 2) of about 6 % to 10 % for the phantom related operational quantities. The X ray radiation fields described in the informative Annexes A to C are not designated as reference X-radiation fields.

NOTE The first edition of ISO 4037-1, issued in 1996, included some additional radiation qualities for which such published information is not available. These are fluorescent radiations, the gamma radiation of the radionuclide 241Am, S-Am, and the high energy photon radiations R-Ti and R-Ni, which have been removed from the main part of this document. The most widely used radiations, the fluorescent radiations and the gamma radiation of the radionuclide 241Am, S-Am, are included nearly unchanged in the informative Annexes A and B. The informative Annex C gives additional X radiation fields, which are specified by the quality index.

The methods for producing a group of reference radiations for a particular photon-energy range are described in Clauses 4 to 6, which define the characteristics of these radiations. The three groups of reference radiation are:

a) in the energy range from about 8 keV to 330 keV, continuous filtered X radiation;

b) in the energy range 600 keV to 1,3 MeV, gamma radiation emitted by radionuclides;

c) in the energy range 4 MeV to 9 MeV, photon radiation produced by accelerators.

The reference radiation field most suitable for the intended application can be selected from Table 1, which gives an overview of all reference radiation qualities specified in Clauses 4 to 6. It does not include the radiations specified in the Annexes A, B and C.

The requirements and methods given in Clauses 4 to 6 are targeted at an overall uncertainty (k = 2) of the dose(rate) value of about 6 % to 10 % for the phantom related operational quantities in the reference fields. To achieve this, two production methods are proposed:

The first one is to produce "matched reference fields", whose properties are sufficiently well-characterized so as to allow the use of the conversion coefficients recommended in ISO 4037-3. The existence of only a small difference in the spectral distribution of the "matched reference field" compared to the nominal reference field is validated by procedures, which are given and described in detail in ISO 4037-2. For matched reference radiation fields, recommended conversion coefficients are given in ISO 4037-3 only for specified distances between source and dosemeter, e.g., 1,0 m and 2,5 m.

For other distances, the user has to decide if these conversion coefficients can be used. If both values are very similar, e.g., differ only by 2 % or less, then a linear interpolation may be used.

The second method is to produce "characterized reference fields". Either this is done by determining the conversion coefficients using spectrometry, or the required value is measured directly using secondary standard dosimeters. This method applies to any radiation quality, for any measuring quantity and, if applicable, for any phantom and angle of radiation incidence. In addition, the requirements on the parameters specifying the reference radiations depend on the definition depth in the phantom, i.e., 0,07 mm, 3 mm and 10 mm, therefore, the requirements are different for the different depths. Thus, a given radiation field can be a "matched reference field" for the depth of 0,07 mm but not for the depth of 10 mm, for which it can then be a "characterized reference field". The conversion coefficients can be determined for any distance, provided the air kerma rate is not below 1 μGy/h.

Both methods need charged particle equilibrium for the reference field. However, this is not always established in the workplace field for which the dosemeter is calibrated. This is especially true at photon energies without inherent charged particle equilibrium at the reference depth d, which depends on the actual combination of energy and reference depth d. Electrons of energies above 65 keV, 0,75 MeV and 2,1 MeV can just penetrate 0,07 mm, 3 mm and 10 mm of ICRU tissue, respectively, and the radiation qualities with photon energies above these values are considered as radiation qualities without inherent charged particle equilibrium for the quantities defined at these depths.

To determine the dose(rate) value and the associated overall uncertainty of it, a calibration of all measuring instruments used for the determination of the quantity value is needed which is traceable to national standards.

This document does not specify pulsed reference radiation fields.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 17 nov 2020
Se merSe mindre
 

This document specifies the procedures for the dosimetry of X and gamma reference radiation for the calibration of radiation protection instruments over the energy range from approximately 8 keV to 1,3 MeV and from 4 MeV to 9 MeV and for air kerma rates above 1 μGy/h. The considered measuring quantities are the air kerma free-in-air, Ka, and the phantom related operational quantities of the International Commission on Radiation Units and Measurements (ICRU)[2], H*(10), Hp(10), H'(3), Hp(3), H'(0,07) and Hp(0,07), together with the respective dose rates. The methods of production are given in ISO 4037-1.

This document can also be used for the radiation qualities specified in ISO 4037-1:2019, Annexes A, B and C, but this does not mean that a calibration certificate for radiation qualities described in these annexes is in conformity with the requirements of ISO 4037.

The requirements and methods given in this document are targeted at an overall uncertainty (k = 2) of the dose(rate) of about 6 % to 10 % for the phantom related operational quantities in the reference fields. To achieve this, two production methods of the reference fields are proposed in ISO 4037-1.

The first is to produce "matched reference fields", which follow the requirements so closely that recommended conversion coefficients can be used. The existence of only a small difference in the spectral distribution of the "matched reference field" compared to the nominal reference field is validated by procedures, which are given and described in detail in this document. For matched reference radiation fields, recommended conversion coefficients are given in ISO 4037-3 only for specified distances between source and dosemeter, e.g., 1,0 m and 2,5 m. For other distances, the user has to decide if these conversion coefficients can be used.

The second method is to produce "characterized reference fields". Either this is done by determining the conversion coefficients using spectrometry, or the required value is measured directly using secondary standard dosimeters. This method applies to any radiation quality, for any measuring quantity and, if applicable, for any phantom and angle of radiation incidence. The conversion coefficients can be determined for any distance, provided the air kerma rate is not below 1 μGy/h.

Both methods require charged particle equilibrium for the reference field. However this is not always established in the workplace field for which the dosemeter shall be calibrated. This is especially true at photon energies without inherent charged particle equilibrium at the reference depth d, which depends on the actual combination of energy and reference depth d. Electrons of energies above 65 keV, 0,75 MeV and 2,1 MeV can just penetrate 0,07 mm, 3 mm and 10 mm of ICRU tissue, respectively, and the radiation qualities with photon energies above these values are considered as radiation qualities without inherent charged particle equilibrium for the quantities defined at these depths.

This document is not applicable for the dosimetry of pulsed reference fields.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 17 nov 2020
Se merSe mindre
 

This document specifies additional procedures and data for the calibration of dosemeters and doserate meters used for individual and area monitoring in radiation protection. The general procedure for the calibration and the determination of the response of radiation protection dose(rate)meters is described in ISO 29661 and is followed as far as possible. For this purpose, the photon reference radiation fields with mean energies between 8 keV and 9 MeV, as specified in ISO 4037-1, are used. In Annex D some additional information on reference conditions, required standard test conditions and effects associated with electron ranges are given. For individual monitoring, both whole body and extremity dosemeters are covered and for area monitoring, both portable and installed dose(rate)meters are covered.

Charged particle equilibrium is needed for the reference fields although this is not always established in the workplace fields for which the dosemeter should be calibrated. This is especially true at photon energies without inherent charged particle equilibrium at the reference depth d, which depends on the actual combination of energy and reference depth d. Electrons of energies above 65 keV, 0,75 MeV and 2,1 MeV can just penetrate 0,07 mm, 3 mm and 10 mm of ICRU tissue, respectively, and the radiation qualities with photon energies above these values are considered as radiation qualities without inherent charged particle equilibrium for the quantities defined at these depths. This document also deals with the determination of the response as a function of photon energy and angle of radiation incidence. Such measurements can represent part of a type test in the course of which the effect of further influence quantities on the response is examined.

This document is only applicable for air kerma rates above 1 μGy/h.

This document does not cover the in-situ calibration of fixed installed area dosemeters.

The procedures to be followed for the different types of dosemeters are described. Recommendations are given on the phantom to be used and on the conversion coefficients to be applied. Recommended conversion coefficients are only given for matched reference radiation fields, which are specified in ISO 4037-1:2019, Clauses 4 to 6. ISO 4037-1:2019, Annexes A and B, both informative, include fluorescent radiations, the gamma radiation of the radionuclide 241Am, S-Am, for which detailed published information is not available. ISO 4037-1:2019, Annex C, gives additional X radiation fields, which are specified by the quality index. For all these radiation qualities, conversion coefficients are given in Annexes A to C, but only as a rough estimate as the overall uncertainty of these conversion coefficients in practical reference radiation fields is not known.

NOTE The term dosemeter is used as a generic term denoting any dose or doserate meter for individual or area monitoring.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 17 nov 2020
Se merSe mindre
 

This document gives guidelines on additional aspects of the characterization of low energy photon radiations and on the procedures for calibration and determination of the response of area and personal dose(rate)meters as a function of photon energy and angle of incidence. This document concentrates on the accurate determination of conversion coefficients from air kerma to Hp(10), H*(10), Hp(3) and H'(3) and for the spectra of low energy photon radiations. As an alternative to the use of conversion coefficients the direct calibration in terms of these quantities by means of appropriate reference instruments is described.

Kommittébeteckning: SIS/TK 110 (Akustik och buller)
Källa: ISO
Svarsdatum: den 8 dec 2020
Se merSe mindre
 

This document specifies a method to predict the dynamic forces generated by an active component on a receiving structure from measurement on a test bench.

It sets out the requirements applicable to test benches and setup measurement conditions of dynamic forces: a criterion of validity of transfer functions measurements can be established for example.

The objective is to evaluate noise and vibrations generated by active components mounted on receiving structures.

It can be applied to different systems connected to a building, such as a compressor or a power generator, or to systems connected to a vehicle body, such as an engine powertrain or an electrical actuator, for example.

Kommittébeteckning: SIS/TK 275 (Verktygsmaskiner - Säkerhet)
Källa: ISO
Svarsdatum: den 14 dec 2020
Se merSe mindre
 

This noise test code specifies all the information necessary to carry out efficiently and under standardized conditions the determination, declaration and verification of the noise emission characteristics of machine tools.

Noise emission characteristics include emission sound pressure levels at workstations and the sound power level. The determination of these quantities is necessary for:

- manufacturers to declare the noise emitted;

- comparing the noise emitted by machine tools in the family concerned;

- purposes of noise exposure risk assessment by the user of the machine tool.

The use of this noise test code ensures reproducibility of the determination of the noise emission characteristics within specified limits determined by the grade of accuracy of the basic noise measurement method used. Noise measurement methods referred to in this standard are accuracy grade 2 (engineering grade) or accuracy grade 3 (survey grade).

Accuracy grade 2 is preferred with the benefit of having a lower measurement uncertainty, accuracy grade 3 is allowed.

Kommittébeteckning: SIS/TK 432 (Hydrometri)
Källa: CEN
Svarsdatum: den 21 dec 2020
Se merSe mindre
 

This International Standard gives terms, definitions and symbols used in standards in the field of hydrometry.