Utrustning för hantering av petroleumprodukter och naturgas
- +Ämnesområden
- +Petroleum och motsvarande tekniker (11)
- Utvinning och bearbetning av petroleum och naturgas (1)
- Råolja (1)
- Naturgas (1)
- Petroleumprodukter: allmänt (2)
- Smörjmedel (1)
- Hydraulvätskor (0)
- Vaxer, bitumen och andra petroleumprodukter (0)
- +Bränsle (3)
- +Utrustning för petroleum- och naturgasindustri (2)
- Utrustning för hantering av petroleumprodukter och naturgas (2)
ISO 14044 requires the goal and scope of an LCA to be clearly defined and be consistent with the intended application. Due to the iterative nature of LCA, it is possible that the LCA scope needs to be refined during the study. This document specifies methodologies that can be applied to determine the carbon footprint of a product (CFP) or partial CFP of a hydrogen product in line with ISO 14067. The goals and scopes of the methodologies correspond to either approach a) or b), given below, that ISO 14040:2006, A.2 gives as two possible approaches to LCA. a) An approach that assigns elementary flows and potential environmental impacts to a specific product system, typically as an account of the history of the product. b) An approach that studies the environmental consequences of possible (future) changes between alternative product systems. Approaches a) and b) have become known as attributional and consequential, respectively, with complementary information accessible in the ILCD handbook.[1] There are numerous pathways to produce hydrogen from various primary energy sources. This document describes the requirements and evaluation methods applied to several hydrogen production pathways of interest: electrolysis, steam methane reforming (with carbon capture and storage), co-production and coal gasification (with carbon capture and storage), auto-thermal reforming (with carbon capture and storage), hydrogen as a co-product in industrial applications and hydrogen from biomass waste as feedstock. This document also considers the GHG emissions due to the conditioning or conversion of hydrogen into different physical forms and chemical carriers: — hydrogen liquefaction; — production, transport and cracking of ammonia as a hydrogen carrier; — hydrogenation, transport and dehydrogenation of liquid organic hydrogen carriers (LOHCs). This document considers the GHG emissions due to hydrogen and/or hydrogen carriers’ transport up to the consumption gate. It is possible that future revisions of this document will consider additional hydrogen production, conditioning, conversion and transport methods. This document applies to and includes every delivery along the supply chain up to the final delivery to the consumption gate (see Figure 2 in the Introduction). This document also provides additional information related to evaluation principles, system boundaries and expected reported metrics in the form of Annexes A to K, that are accessible via the online ISO portal (https://standards.iso.org/iso/ts/19870/ed-1/en).
This document describes the concept of production assurance within the systems and operations associated with exploration drilling, exploitation, processing and transport of petroleum, petrochemical and natural gas resources. This document covers upstream (including subsea), midstream and downstream facilities, petrochemical and associated activities. It focuses on production assurance of oil and gas production, processing and associated activities and covers the analysis of reliability and maintenance of the components. This includes a variety of business categories and associated systems/equipment in the oil and gas value chain. Production assurance addresses not only hydrocarbon production, but also associated activities such as drilling, pipeline installation and subsea intervention. This document provides processes and activities, requirements and guidelines for systematic management, effective planning, execution and use of production assurance and reliability technology. This is to achieve cost-effective solutions over the life cycle of an asset development project structured around the following main elements: — production assurance management for optimum economy of the facility through all of its life cycle phases, while also considering constraints arising from health, safety, environment, and quality; — planning, execution and implementation of reliability technology; — application of reliability and maintenance data; — reliability-based technology development, design and operational improvement. The IEC 60300-3 series addresses equipment reliability and maintenance performance in general. This document designates 12 processes, of which seven are defined as core production assurance processes and addressed in this document. The remaining five processes are denoted as interacting processes and are outside the scope of this document. The interaction of the core production assurance processes with these interacting processes, however, is within the scope of this document as the information flow to and from these latter processes is required to ensure that production assurance requirements can be fulfilled. The only requirement mandated by this document is the establishment and execution of the production assurance programme (PAP). It is important to reflect the PAP in the overall project management in the project for which it applies. This document recommends that the listed processes and activities be initiated only if they can be considered to add value.