Metrologi och mätning. Fysikaliska fenomen

Kommittébeteckning: SIS/TK 111/AG 01 (Människans påverkan av vibrationer)
Källa: CEN
Svarsdatum: den 9 jun 2025
Se merSe mindre
 

This document specifies the requirements for declaration and verification of vibration emission values of continuous, frequency-weighted and repeated shock vibrations. It applies to hand-arm and whole-body vibration values achieved by measurements according to type-B and type-C standards. It - gives guidance on the declaration of vibration emission values, - describes vibration and product information to be given in the instruction for use supplied with the machinery, - specifies the method for verifying the declared vibration emission values stated in the instruction for use of the machinery.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 8 aug 2025
Se merSe mindre
 

This document describes a generic test method for measuring alpha emitting radionuclides, for all types of samples (soil, sediment, construction material, foodstuff, water, airborne, environmental bio-indicator, human biological samples as urine, faeces etc.) by alpha spectrometry. This method can be used for any type of environmental study or monitoring of alpha emitting radionuclides activities. If relevant, this test method requires appropriate sample pre-treatment followed by specific chemical separation of the test portion in order to obtain a thin source proper to alpha spectrometry measurement. This test method can be used to determine the activity, specific activity or activity concentration of a sample containing alpha emitting radionuclides such as 210Po, 226Ra, 228Th, 229Th, 230Th, 232Th, 232U,234U, 235U, 238U, 238Pu, 239+240Pu, 241Am or 243+244Cm. This test method can be used to measure very low levels of activity, one or two orders of magnitude less than the usual natural levels of alpha emitting radionuclides. Annexes B of UNSCEAR 2000 and UNSCEAR 2008 give, respectively, typical natural activity concentrations for air, foods, drinking waters and, soils and building materials. The detection limit of the test method depends on the amount of the sample material analysed (mass or volume) after concentration, chemical yield, thickness of measurement source and counting time. The quantity of the sample to be collected and analysed depends on the expected activity of the sample and the detection limit to achieve.

Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 8 aug 2025
Se merSe mindre
 

This document specifies the requirements for reference beta radiation fields produced by radioactive sources to be used for the calibration of personal and area dosemeters and dose-rate meters to be used for the determination of the quantities Hp(0,07), H'(0,07;Ω), Hp(3) and H'(3;Ω), and for the determination of their response as a function of beta particle energy and angle of incidence. The basic quantity in beta dosimetry is the absorbed-dose rate in a tissue-equivalent slab phantom. This document gives the characteristics of radionuclides that have been used to produce reference beta radiation fields, gives examples of suitable source constructions and describes methods for the measurement of the residual maximum beta particle energy and the dose equivalent rate at a depth of 0,07 mm in the International Commission on Radiation Units and Measurements (ICRU) sphere. The energy range involved lies between 0,22 MeV and 3,6 MeV maximum beta energy corresponding to 0,07 MeV to 1,2 MeV mean beta energy and the dose equivalent rates are in the range from about 10 µSv·h-1 to at least 10 Sv·h-1.. In addition, for some sources, variations of the dose equivalent rate as a function of the angle of incidence are given. However, as noted in ICRU 56[5], the ambient dose equivalent, H*(10), used for area monitoring, and the personal dose equivalent, Hp(10), as used for individual monitoring, of strongly penetrating radiation, are not appropriate quantities for any beta radiation, even that which penetrates 10 mm of tissue (Emax > 2 MeV). This document is applicable to two series of reference beta radiation fields, from which the radiation necessary for determining the characteristics (calibration and energy and angular dependence of response) of an instrument can be selected. Series 1 reference radiation fields are produced by radioactive sources used with beam-flattening filters designed to give uniform dose equivalent rates over a large area at a specified distance. The proposed sources of 106Ru/106Rh, 90Sr/90Y, 85Kr, 204Tl and 147Pm produce maximum dose equivalent rates of approximately 200 mSv·h–1. Series 2 reference radiation fields are produced without the use of beam-flattening filters, which allows large area planar sources and a range of source-to-calibration plane distances to be used. Close to the sources, only relatively small areas of uniform dose rate are produced, but this series has the advantage of extending the energy and dose rate ranges beyond those of series 1. The series also include radiation fields using polymethylmethacrylate (PMMA) absorbers to reduce the maximum beta particle energy. The radionuclides used are those of series 1; these sources produce dose equivalent rates of up to 10 Sv·h–1.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 8 aug 2025
Se merSe mindre
 

This document specifies methods for the measurement of the absorbed-dose rate in a tissue-equivalent slab phantom in the ISO 6980 reference beta-particle radiation fields. The energy range of the beta-particle-emitting isotopes covered by these reference radiations is 0,22 MeV to 3,6 MeV maximum beta energy corresponding to 0,07 MeV to 1,2 MeV mean beta energy. Radiation energies outside this range are beyond the scope of this document. While measurements in a reference geometry (depth of 0,07 mm or 3 mm at perpendicular incidence in a tissue‑equivalent slab phantom) with an extrapolation chamber used as primary standard are dealt with in detail, the use of other measurement systems and measurements in other geometries are also described, although in less detail. However, as noted in ICRU 56, the ambient dose equivalent, H*(10), used for area monitoring, and the personal dose equivalent, Hp(10), as used for individual monitoring, of strongly penetrating radiation, are not appropriate quantities for any beta radiation, even that which penetrates 10 mm of tissue (Emax > 2 MeV). This document is intended for those organizations wishing to establish primary dosimetry capabilities for beta particles and serves as a guide to the performance of dosimetry with an extrapolation chamber used as primary standard for beta‑particle dosimetry in other fields. Guidance is also provided on the statement of measurement uncertainties.

Ämnesområden: Strålningsmätning
Kommittébeteckning: SIS/TK 405 (Kärnenergi)
Källa: CEN
Svarsdatum: den 8 aug 2025
Se merSe mindre
 

This document describes procedures for calibrating and determining the response of dosemeters and dose-rate meters in terms of the operational quantities for radiation protection purposes defined by the International Commission on Radiation Units and Measurements (ICRU). However, as noted in ICRU 56, the ambient dose equivalent, H*(10), used for area monitoring, and the personal dose equivalent, Hp(10), as used for individual monitoring, of strongly penetrating radiation, are not appropriate quantities for any beta radiation, even that which penetrates 10 mm of tissue (Emax > 2 MeV). This document is a guide for those who calibrate protection-level dosemeters and dose-rate meters with beta-reference radiation and determine their response as a function of beta-particle energy and angle of incidence. Such measurements can represent part of a type test during the course of which the effect of other influence quantities on the response is examined. This document does not cover the in-situ calibration of fixed, installed area dosemeters. The term “dosemeter” is used as a generic term denoting any dose or dose-rate meter for individual or area monitoring. In addition to the description of calibration procedures, this document includes recommendations for appropriate phantoms and the way to determine appropriate conversion coefficients. Guidance is provided on the statement of measurement uncertainties and the preparation of calibration records and certificates.